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1. Introduction

Landslide incidents have become destructive natural hazards in many parts of the world,
particularly in mountainous regions, including Ethiopia. They may destroy engineering structures,
cause loss of property, degradation of the environment, and fatalities. The events frequently occur
due to complex geological, geomorphological, climate change, and unplanned land practice
conditions. Thus, understanding the severity of landslides and their processes is crucial for
identifying the most critical conditions and triggering factors that help to predict landslide-prone
and non-landslide-prone regions. This knowledge is essential for predicting, assessing, and
mitigating the impacts and losses associated with landslide incidents (Wubalem, 2021). Landslide
prediction model quality is influenced by mapping techniques, input datasets, and landslide sizes.
Landslide size, in particular, affects the influence of factors derived from the digital elevation
model (DEM) such as slope, aspect, curvature, and elevation. Larger landslide sizes are better
suited to coarser or lower DEM resolution, while the smaller landslide sizes might be effectively
captured under finer or higher DEM resolution (Wubalem, 2022). Therefore, landslide factor
selection and landslide size analysis are key steps in landslide susceptibility modeling. Although
landslide prediction modeling is conducted worldwide (Ado et al., 2022; Fang et al., 2021;
Getachew and Meten, 2021). Studies related to factor optimization, particularly using the area
under the receiver operating characteristic, are limited.

This case study aims to investigate the effectiveness of the area under the receiver operating
characteristics curve (AUC — a visual representation of model performance) in identifying the most
relevant landslide factors for susceptibility modeling (Figure 1). This case study employed
fieldwork, image analysis, GIS, and bivariate statistical methods to predict the spatial landslide

susceptibility probability based on past landslide events. This finding provides insights into how
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landslide factors affect the quality of the prediction model and their effectiveness in engineering
design and landslide mitigation strategies.

2. Materials and Methods

A dataset comprising 12 landslide factors and 712 landslides was compiled from literature, detailed
fieldwork, and Google Earth Imagery analysis. These landslides were divided into training (70%)
and validation (30%) datasets (Figure 1a). The relationship between past landslides and factors
was analyzed using the frequency ratio (FR) method and ArcGIS 10.3.1 (ESRI, 2014). Then, the
degree of landslide factors was evaluated using the area under the receiver operating characteristic
curve (AUC) by an overlaid method in the GIS environment. Landslide pixels for each landslide
factor were extracted. Then, the most effective landslide factors were determined. The landslide
susceptibility maps were generated from the sum of weighted parameters before and after
optimization under a raster calculator in a GIS environment.

3. Results and Discussion

Landslide factors optimization or selection is crucial in landslide susceptibility prediction
modeling. In this study, an AUC cutoff threshold of 0.5 was used. A higher threshold (e.g. 0.6 and
above) could identify only highly predictive factors but might exclude those with a moderate
impact on landslide occurrence. Thus, a 0.5 cutoff can include factors that moderately contribute
to landslide occurrence.

The result indicates that factor optimization using the AUC method identified six factors with AUC
values > 0.5; the remaining factors had AUC values < 0.5. The weighted factors were combined
to create landslide susceptibility indexes (LSIs), categorized into five susceptibility zones of very
low, low, moderate, high, and very high (Figure 1b) using the natural break classification method,
which is appropriate for safe engineering practice, risk assessment and land-use planning (Zhang
et al., 2022). The susceptibility zones range from relatively safe regions in areas of flat land and
strong lithology to high susceptibility zones in areas of steep slopes, weak lithology, and low
vegetation cover. ROC (Receiver Operating Characteristic) curves determined AUC values, with
the FR model achieving a 66.41% prediction before removing factors that scored <0.5. After factor
optimization (landslide factor selection), the FR model demonstrated a success rate of 78.1% and
a predictive rate of 73.5%, indicating improved performance (Figure 1¢ and d). This underscores

the influence of landslide factors on mapping accuracy and highlights the importance of
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optimization. The optimized FR model holds promise for researchers and decision-makers

engaged in regional land use planning and landslide risk.

4. Conclusion

The area under the ROC curve (AUC) was used to determine the most effective landslide factors
(those whose values were greater than 0.5). The result indicates that only six factors had AUC
values greater than 0.5. The landslide susceptibility models were produced before and after factor
optimization, and their quality was evaluated using AUC. The result indicates that the quality of
the model is improved after factor optimization. The result emphasizes that landslide factor
optimization is a critical step in landslide susceptibility modeling for high-quality models. The
frequency of landslide occurrence needs attention, and it is crucial to conduct detailed geological
engineering investigations before the construction of any engineering structures. Appropriate
consideration of the ground and slope monitoring is a recommended strategy for safe and stable

engineering structures.
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Figure 1 (a) landslide inventory (b) landslide susceptibility map (c) and (d) receiver operating

characteristics curve before and after factor optimization (Wubalem et al., 2022).
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