

A295204 .526 Photogrammetric 3D models for 1345.5 engineering geologic mapping and stability analyses of rock slopes

Markus Pötsch & Andreas Gaich, 3GSM GmbH, Graz, Austria

Euroengeo 2021, C38, October 6, 2021

Introduction

• What is a photogrammetric 3D model?

- Generation
- Structure
- Registration

• How does the geologist map on a 3D model?

- Tools
- Automatic helpers
- Audit

• Examples

3D model generation

3D model registration

Georeferencing using Ground Control Points

Scaling & orientating

 Georeferencing using drone GNSS (RTK)

Geologic mapping tools for 3D images

Orientations

Traces

- Mean orientation around single point
- Dip direction
- Dip angle

- Open polygon following the joint trace along the 3D surface
- Position
- Mean dip and dip direction of plane forming the trace

Areas

- Mean dip and dip direction of area assigned to exposed joint surface
- Position (important e.g. for block analysis)
- Automatic region growing

Discontinuity maps

On a bench scale

Spatial structural-geologic condition

Software & Measurement

Number of discontinuity sets

Euroengeo 2021, C38, October 6, 2021

Discontinuity maps

• On a pit scale

- 250 m deep open pit in Western Australia
- Model built from over 700 UAV photographs in <2 hours
- Over 350 geological structures mapped in 3 hours

Discontinuity maps

• On a pit scale

Automatic assessment guided by the expert user

Euroengeo 2021, C38, October 6, 2021

Guided mapping of areas

Bench 3D image

Guided mapping of areas

Seed point and roughness / evenness

Guided mapping of areas

Repeated application – expert user decides upon application

Discontinuity set orientations

Discontinuity set spacing

	Spacing	Trace length
Measurements:	14	7
Frequency [1/m]:	0.32	
Total [m]:		129.43
Mean [m]:	3.17	18.49
Median [m]:	3.07	19.95
Std dev [m]:	2.20	9.75
Minimum [m]:	0.0	7.25
Maximum [m]:	8.21	34.41

Euroengeo 2021, C38, October 6, 2021

Discontinuity set spacing

What about traces?

Euroengeo 2021, C38, October 6, 2021

Bench 3D model

Define start and end point – trace is formed along texture path

Repeated application by the expert user

Trace map with rock mass characteristics

Euroengeo 2021, C38, October 6, 2021

Bench 3D image

Software & Measuremen

Analysis zones

 Analysis parameters are similar within analysis zones

Software & Measurement

- Exclude unwanted regions (muck, vegetation, equipment, etc.)
- Exclusions zones are also possible ("Masks")

Colour overlay

Surface patches with similar orientation

Discontinuity area polygons and discontinuity sets

Generation of polygons

- Audit of the automatically generated patches by the expert user
- Efficient auditing tools are necessary

Spacing analysis – Analysis zones

Discontinuity set clustering

- Similarity in orientation ("Fuzzy k-means")
- Weighted by size of fracture

Discontinuity set clustering

- Similarity in orientation ("Fuzzy k-means")
- Weighted by size of fracture

- Observations and measurements are modelled to interpreted discontinuities
- Extrapolation and projection into the rock mass
- Intersections of discontinuities
- Integration of various measurements / observations of the same structure

- Joint trace
- Orientation
- Modelled discontinuity
- Changing size extrapolation

Euroengeo 2021, C38, October 6, 2021

Rock fall area

Data acquisition by drone survey

- Drone flight specifics
- Complex geometry, size of object and visibility in the area called for flying the drone interactively
- Requires some experience
- Live observation of actual camera view on the ground

3D model

- 750 m x 250 m
- 740 photos á
 36 Megapixels
- GSD < 1 cm / px
- Data acquisition approx. 1 hour
- Processing time appox. 3 hours

Assessment of a slide in an open pit

Bar, N. et al. (2020). Rapid and robust slope failure appraisal using aerial photogrammetry and 3D slope stability models. Int. J. Min. Sci. & Tech. 30. 651-658.

Convex slope profile

• 24 m high, approx. 15 000 tons

excerbated by rainfall

Planar slope failure triggered

by undercut shale bands and

Open pit slide

Photogrammetric reconstruction

- 284 photos á 20 Megapixel
- < 1 h processing time</p>
- 3D model
 - 7 Mio points
 - GSD < 2 cm / px

Euroengeo 2021, C38, October 6, 2021

Open pit slide

Geologic mapping and modelling

- 198 mapped discontinuities
- Modelling failure planes as discrete, meshed elements
- 3D limited equilibrium method

Open pit slide

- Failure area with events and tension cracks
- Back-analysis (left)
- Re-evaluation of future pit slope design (right)

Product

ShapeMetriX 3D ShapeMetriX UAV

Rock mass characterization Geologic mapping Volumetrics Change detection

www.3gsm.at

429520.4.5265 Photogrammetric 3D models for 1345.5 engineering geologic mapping and stability analyses of rock slopes Thank you!

Markus Pötsch & Andreas Gaich, 3GSM GmbH, Graz, Austria

Euroengeo 2021, C38, October 6, 2021