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Different mechanisms

Fig. 1 Example of different rock fall
detachment mechanismes.
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Causes of 308 Rockfalls on Highways ]‘riggering Factors of Slope Failures
Rock falls, topples, and slides in California in Yosemite National Park
CAUSE OF ROCKFALL PERCENTAGE OF TOTAL*  TRIGGERING FACTOR NUMBER  PERCENT
Rain 30 Rainfall 78 51.0
Freeze—thaw 21 Rainfall and snow 15 9.8
Fractured rock 12 Freeze-thaw 18 11.8
Wind 12 Earthquakes 21 137
Snowmelt 8 Blasting and construction 12 78
Channeled runoff 7 Lightning, wind storms, spring 9 59
Adverse planar fracture ) runoff
Bl.lrrowm.g anlm:':lls 2 SOURCE: Guzzetti et al. 2003.
Differential erosion |
Tree roots 0.6
: Table. 1 Causes and triggering factors for rock
S 0.6
Detachment vglrgisn(l);zelse ie 03 slope failures (Higgins and Andrew 2012).

* Triggers Truck vibrations 0.3

Soil decomposition 0.3

* Precursory factors “May not sum due to rounding.

. . : ret al. 1985.
* Progressive failure SOURCE: McCauley et al. 198

e Different mechanisms

Fig. 2 Some rock fall and slide detachment mechanisms (after Wyllie and Mah 2012). The U@fA
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Rock fall processes
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Fig. 3 Rock fall trends by month and altitude of detachment zone
Y\ \ (Bjerrum and Jgrstad, 1968).

Seasonal rock fall — weather correlations are well known as well:
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Fig. 4 Rock fall trends with month and weather indicators along a
rail corridor in Canada (after Macciotta et al. 2015). Th e U @fA
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Rock fall processes

Can we know the timing for the next rock fall occurrence based on weather?
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ig. 5 Rock block instability illustrated as FoS and magnitude of potential triggers

Iterative nonlinear systems are those in
which the current state depends on the
previous state(s).

These systems are capable of showing
unpredictable behavior arising from
simple, deterministic descriptions.

The phenomenon (rock fall) is
determined by its past states, but in
practice, small uncertainties and
knowledge gaps introduce calculation
errors that become amplified with
longer forward modeling and prediction

Xiy1 = F(Xi)
The U@fA
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One common mathematical expression is the Xi is the value of variable X at time i and k is a growth factor.

Logistic difference equation: e Values between 0 and 1 for k values between 0 and 4 and initial X between 0
and 1.

Xi+1 - kXi(1 "y Xi) Depending on the value of k, the solution of the equation can tend to a fixed
value, jump between defined values (2, 4, 8...2n values), or behave in a chaotic

manner. The chaotic behavior is observed for values of 3.57<k< 4

k=1land X;=05  Xuy=11X(1-X)  k=3and X;=05 X, =3X(1-X) k=3.95and X;=0.5  X;=3.95X(1-X)
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Fig. 6 Logistic difference equation behavior for different input parameters Th e U@fA
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Importantly, “rounding error” compounds:

‘ Sensitivity to k _ x Sensitivity to X;
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Fig. 7 Logistic difference equation behavior — sensitivity in the chaotic regime The U@fA
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Plausibility tested along railway line between North Vancouver and Squamish
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Used binomial distribution fit and logistic difference equation to simulate 10,000 years of annual rock fall data. Results were
compared against the 27-year rock fall database to evaluate which simulation was a better fit.

No. rock falls

No. rock falls
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Year

Fig. 9 Results of 27-year synthetic data from random binomial simulation and from

Logistic difference equation (After Macciotta and Hendry, 2017).

Binomial distribution best correlation:
0.67

Follows general trend

Does not correlate much when smaller
periods (3 to 5 years) are analyzed.

Iterative, nonlinear approach had a best
correlation of 0.79

Follows general trend and correlates
better with smaller periods (3 to 5 years).
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Implication is that prediction becomes unachievable at a practicable budget

Rock fall are commonly treated stochastically

The way forward is an Informed Probabilistic Approach for risk management
* Considers non-linear behavior

e Accounts for weather trends

Long term and short term forecasting of rock fall probability -> rock fall risk and the
expected risk variability in time

The U@fA
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/
—— Norm. Cum. Precip. = — .
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Norm. Cum. f-t cycles s —
«  Rock falls plotted on precipitation 0-08m block
*  Rock falls plotted on f-t cycles Elnopedion) Patrol car ? ST Chosin) i)
Total = sSumMm
: . Weather-based criteria for 3-day cumulative precipitation
100 3 - day time period Prodiction success periods of higher rock fall
P —— Time above threshold hazard - Squamish 124-157 S2mm >2mm
: i a)
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8 8 : Threshold at 0.002 freeze-thaw cycle
ﬁ g E Hazard time 50% (183 days/year) within 3 days? Yeos
D, & I
QB
T - b) N
0 g 80% prediction success Within 2 first weeks 0
S Hazard time 36% (131 days/year) Notee:
oL——— 1 . s 90% of rock falls occur within hazardous periods
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An average of 50% of the time within a year is under a hazardous period warning

Threshold

Fig. 10 From rock fall — weather relationship to risk-based operational strategies (After Macciotta et al., 2017). '
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for statistical modeling (After Pratt et al., 2018; Macciotta, 2019). The U@fA
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Proposed way forward

Using the von Mises distributions for weather:

von Mises W;
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Fig. 12 Quantified correlation between weather normals and rock fall probability with fitted Mixed
von Mises distributions (After Pratt et al., 2018).

Average daily rock fall

probability (6;) (x 107?)

January 0.9
February 1.6
March 13
April 0.8
May 0.5
June 0.5
July 0.5
August 0.6
September 13
October 21
November 19
December 1.2
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Remarks:

* Rock fall behavior appears to follow non-linear patterns, which implies deterministic,
non-predictable behavior.

* Rock falls are treated stochastically, way forward is an enhanced Informed Probabilistic
Approach that considers the non-linear behavior and accounts for weather trends in a

guantitative manner.

* Research has been moving forward in this front, providing first steps towards
qguantification of the relationship between weather and rock fall occurrences (short
term) and seasonality (longer term), and time dependent variation of rock fall risk.

* Much work is still required, but recent research has opened a window of opportunity for
forecasting rock fall risk variations as a consequence of Climate Change.
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THANK YOU!

Renato Macciotta, PhD, PEng
macciott@ualberta.ca
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